Automated Driving Toolbox
Design, simulate, and test ADAS and autonomous driving systems
Automated Driving Toolbox™ provides algorithms and tools for designing, simulating, and testing ADAS and autonomous driving systems. You can design and test vision and lidar perception systems, as well as sensor fusion, path planning, and vehicle controllers. Visualization tools include a bird’s-eye-view plot and scope for sensor coverage, detections and tracks, and displays for video, lidar, and maps. The toolbox lets you import and work with HERE HD Live Map data and OpenDRIVE® road networks.
Using the Ground Truth Labeler app, you can automate the labeling of ground truth to train and evaluate perception algorithms. For hardware-in-the-loop (HIL) testing and desktop simulation of perception, sensor fusion, path planning, and control logic, you can generate and simulate driving scenarios. You can simulate camera, radar, and lidar sensor output in a photorealistic 3D environment and sensor detections of objects and lane boundaries in a 2.5-D simulation environment.
Automated Driving Toolbox provides reference application examples for common ADAS and automated driving features, including FCW, AEB, ACC, LKA, and parking valet. The toolbox supports C/C++ code generation for rapid prototyping and HIL testing, with support for sensor fusion, tracking, path planning, and vehicle controller algorithms.
Free White Paper
Reference Application
Use reference applications as a basis for developing automated driving functionality. Automated Driving Toolbox includes reference applications for forward collision warning (FCW), lane keeping assist (LKA), and automated parking valet.
Forward Collision Warning Using Sensor Fusion

Detecting vehicles and lanes in the visual perception system reference application.
Driving Scenario Simulation
Author driving scenarios, use sensor models, and generate synthetic data to test automated driving algorithms in simulated environments.
Cuboid Driving Simulation
Generate synthetic detections from radar and camera sensor models, and incorporate those detections into driving scenarios to test automated driving algorithms with a cuboid-based simulator. Define road networks, actors, and sensors using the Driving Scenario Designer app. Import prebuilt Euro NCAP tests and OpenDRIVE road networks.

Unreal Engine Driving Scenario Simulation
Develop, test, and visualize the performance of driving algorithms in a 3D simulated environment rendered using the Unreal Engine® from Epic Games®.

Using a 3D simulation environment to record synthetic sensor data, develop a lane marker detection system, and test that system under different scenarios.
Ground Truth Labeling
Automate labeling of ground truth data and compare output from an algorithm under test with ground truth data.
Automating Ground Truth Labeling
Use the Ground Truth Labeler app for interactive and automated ground truth labeling to facilitate object detection, semantic segmentation, and scene classification.
Ground Truth Labeler App (10:57)

Testing Perception Algorithms
Evaluate the performance of perception algorithms by comparing ground truth data against algorithm outputs.
Evaluate and Visualize Lane Boundary Detections Against Ground Truth
Perception with Computer Vision and Lidar
Develop and test vision and lidar processing algorithms for automated driving.
Vision System Design
Develop computer vision algorithms for vehicle and pedestrian detection, lane detection, and classification.
Visual Perception Using Monocular Cameras

Lidar Processing
Use lidar data to detect obstacles and segment ground planes.
Track Vehicles Using Lidar: From Point Cloud to Track List

Sensor Fusion and Tracking
Perform multisensor fusion using a multi-object tracking framework with Kalman filters.
Forward Collision Warning Using Sensor Fusion
Visualize Sensor Data and Tracks in Bird's-Eye Scope
Sensor Fusion Using Synthetic Radar and Vision Data in Simulink

Mapping
Access and visualize high-definition map data from the HERE HD Live Map service. Display vehicle and object locations on streaming map viewers.
Accessing HERE HD Live Map Data
Read map data from the HERE HD Live Map web service, including tiled map layers that contain detailed road, lane, and localization information.

Visualizing Map Data
Using streaming coordinates to map the positions of vehicles as they drive.


